Exercise 11

In Exercises 9 to 12, describe all unit vectors orthogonal to both of the given vectors.

$$
-5 \mathbf{i}+9 \mathbf{j}-4 \mathbf{k}, 7 \mathbf{i}+8 \mathbf{j}+9 \mathbf{k}
$$

Solution

Each of the vectors can be written as

$$
\begin{aligned}
-5 \hat{\mathbf{x}}+9 \hat{\mathbf{y}}-4 \hat{\mathbf{z}} & =(-5,9,-4) \\
7 \hat{\mathbf{x}}+8 \hat{\mathbf{y}}+9 \hat{\mathbf{z}} & =(7,8,9)
\end{aligned}
$$

Take the cross product of these two to obtain a vector orthogonal to both of them.

$$
\begin{aligned}
(-5 \hat{\mathbf{x}}+9 \hat{\mathbf{y}}-4 \hat{\mathbf{z}}) \times(7 \hat{\mathbf{x}}+8 \hat{\mathbf{y}}+9 \hat{\mathbf{z}}) & =\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
-5 & 9 & -4 \\
7 & 8 & 9
\end{array}\right| \\
& =\left|\begin{array}{cc}
9 & -4 \\
8 & 9
\end{array}\right| \hat{\mathbf{x}}-\left|\begin{array}{cc}
-5 & -4 \\
7 & 9
\end{array}\right| \hat{\mathbf{y}}+\left|\begin{array}{cc}
-5 & 9 \\
7 & 8
\end{array}\right| \hat{\mathbf{z}} \\
& =(81+32) \hat{\mathbf{x}}-(-45+28) \hat{\mathbf{y}}+(-40-63) \hat{\mathbf{z}} \\
& =113 \hat{\mathbf{x}}+17 \hat{\mathbf{y}}-103 \hat{\mathbf{z}} \\
& =(113,17,-103)
\end{aligned}
$$

To turn this vector into a unit vector, divide it by its magnitude.

$$
\frac{(113,17,-103)}{\sqrt{113^{2}+17^{2}+(-103)^{2}}}=\frac{1}{\sqrt{23667}}(113,17,-103)
$$

There are two unit vectors orthogonal to $-5 \mathbf{i}+9 \mathbf{j}-4 \mathbf{k}$ and $7 \mathbf{i}+8 \mathbf{j}+9 \mathbf{k}$:

$$
\pm \frac{1}{\sqrt{23667}}(113,17,-103)
$$

